10 research outputs found

    Cancer-Associated Fibroblasts Neutralize the Anti-tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors.

    Get PDF
    Tumor-associated macrophages (TAM) contribute to all aspects of tumor progression. Use of CSF1R inhibitors to target TAM is therapeutically appealing, but has had very limited anti-tumor effects. Here, we have identified the mechanism that limited the effect of CSF1R targeted therapy. We demonstrated that carcinoma-associated fibroblasts (CAF) are major sources of chemokines that recruit granulocytes to tumors. CSF1 produced by tumor cells caused HDAC2-mediated downregulation of granulocyte-specific chemokine expression in CAF, which limited migration of these cells to tumors. Treatment with CSF1R inhibitors disrupted this crosstalk and triggered a profound increase in granulocyte recruitment to tumors. Combining CSF1R inhibitor with a CXCR2 antagonist blocked granulocyte infiltration of tumors and showed strong anti-tumor effects

    Inhibition of age-related therapy resistance in melanoma by rosiglitazone-mediated induction of Klotho

    Full text link
    PURPOSE: Aging is a poor prognostic factor for melanoma. We have shown that melanoma cells in an aged microenvironment, are more resistant to targeted therapy than identical cells in a young microenvironment. This is dependent on age-related secreted factors. Klotho is an age-related protein, whose serum levels decrease dramatically by age 40. Studies on klotho in cancer have focused on the expression of klotho in the tumor cell. We have shown that exogenous klotho inhibits internalization and signaling of Wnt5A, which drives melanoma metastasis and resistance to targeted therapy. We investigate here whether increasing klotho in the aged microenvironment could be an effective strategy for the treatment of melanoma. EXPERIMENTAL DESIGN: PPARÎł increases klotho levels, and is increased by glitazones. Using rosiglitazone, we queried the effects of rosiglitazone on Klotho/ Wnt5A crosstalk, in vitro and in vivo, and the implications of that for targeted therapy in young vs. aged animals. RESULTS: We show that rosiglitazone increases klotho and decreases Wnt5A in tumor cells, reducing the burden of both BRAF-inhibitor sensitive, and BRAF inhibitor-resistant tumors in aged, but not young mice. However, when used in combination with PLX4720, tumor burden was reduced in both young and aged mice, even in resistant tumors. CONCLUSIONS: Using glitazones as adjuvant therapy for melanoma may provide a new treatment strategy for older melanoma patients who have developed resistance to vemurafenib. As klotho has been shown to play a role in other cancers too, our results may have wide relevance for multiple tumor types

    Inhibition of age-related therapy resistance in melanoma by rosiglitazone-mediated induction of Klotho

    Get PDF
    PURPOSE: Aging is a poor prognostic factor for melanoma. We have shown that melanoma cells in an aged microenvironment, are more resistant to targeted therapy than identical cells in a young microenvironment. This is dependent on age-related secreted factors. Klotho is an age-related protein, whose serum levels decrease dramatically by age 40. Studies on klotho in cancer have focused on the expression of klotho in the tumor cell. We have shown that exogenous klotho inhibits internalization and signaling of Wnt5A, which drives melanoma metastasis and resistance to targeted therapy. We investigate here whether increasing klotho in the aged microenvironment could be an effective strategy for the treatment of melanoma. EXPERIMENTAL DESIGN: PPARÎł increases klotho levels, and is increased by glitazones. Using rosiglitazone, we queried the effects of rosiglitazone on Klotho/ Wnt5A crosstalk, in vitro and in vivo, and the implications of that for targeted therapy in young vs. aged animals. RESULTS: We show that rosiglitazone increases klotho and decreases Wnt5A in tumor cells, reducing the burden of both BRAF-inhibitor sensitive, and BRAF inhibitor-resistant tumors in aged, but not young mice. However, when used in combination with PLX4720, tumor burden was reduced in both young and aged mice, even in resistant tumors. CONCLUSIONS: Using glitazones as adjuvant therapy for melanoma may provide a new treatment strategy for older melanoma patients who have developed resistance to vemurafenib. As klotho has been shown to play a role in other cancers too, our results may have wide relevance for multiple tumor types

    sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance

    No full text
    Cancer is a disease of aging, and aged cancer patients have a poorer prognosis. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumor progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression(1–4) we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. We find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signaling cascade in melanoma cells that results in a decrease in β-catenin and MITF, and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to ROS-induced DNA damage, rendering them more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumor progression, offering new paradigms for the design of therapy for the elderly
    corecore